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Two new transport algorithms for solving the one-dimensional
relativistic hydrodynamic equations of motion are discussed. One of
them, refativistic HLLE, is based on the HLLE upwind scheme, while
the other is a relativistic adaptation of some kinds of flux corrected
transport (FCT) algorithms. A comparison with other numerical
methods used in relativistic hydrodynamics including fully implicit
© technioyes is given. Emphasis is put on the dependence of the results
an the relativistic gamma factor and on the adiabatic exponent entering
the ideal gas equatian of state. Future applications of the afgorithms are
particularly in the field of ultra-relativistic heavy ion collisions that
requirg transport metheds not critically dependent on the Lorentz
gamma or the equation of state.  © 1993 Academic Press. Inc.

1. INTRODUCTION

In ultra-relativistic heavy ion collisions encrgies of more
than 100 GeV per nucicon arc presently obtained [ 1, 2],
corresponding to relativistic Lorentz gamma factors y = 10,
while for the future experiments in the tera electron volt
regime are planned.

In the encrgy region below about 100 GeV per nucleon
the experimental results could be well reproduced using
a telativistic hydrodynamic model [37. However, the
numerical procedures used in these calculations yield
difficulties il applied to ultra-relativistic collisions with
72 10. Typical problems are related with inconsistencics
in the laboratory [rame quantitics R (mass density), M
(momentum density), and £ {energy density), violating
the relativistic conditions £2 R and Ez M. and wilh
caleulated Tluid velocitics exceeding the speed ol tight,
Norman and Winkler argue [4] that a fully implicit treat-
ment of the relativistic hydrodynamic equations is required
to obtain a consistent solution for large gamma [actors.
Furthermore, to reduce the effect of numerical diffusion, an
adaptive co-moving mesh should be used. Implicit schemes
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and adaptive grids are, however, often not practicable in
multi-dimensional calculations due to the large amount of
CPU time required for an implicit treatment and due to the
cell distortions in general multi-dimensional applications.
In this paper we consider explicit algorithms for the
numerical solution of the relativistic hydrodynamic equa-
tions. In the last years a number of new shock-capturing
schemes have been proposed for the non-relativistic equa-
tions of compressible Muid flow——the Euler equations, One
well-known method is the [lux corrected transport (FCT)
algorithm of Boris and Book [5-8]. It was constructed io
solve a scalar convection equation numerically. A system of
conservation equations is interpreted as a set of scalar equa-
tions and the FCT algorithm is applied to cach equation.
The advantage of this procedure is that it can be easily
applied to general systems. For the relativistic Euier equa-
tions we will present results based on two versions of the
FCT algorithm: the original SHASTA scheme [5] and
the LCPFCT scheme [87 recently proposed. A relativistic
extension of the first was given by Graebner [3]; however,
it was numerically reliable only for moderate y-factors.
Another new algorithm is based on the simplest
Godunov-type scheme for systems of conservation laws
described by Harten et al. [9]. For the non-relativistic
Euler equations Einfeldt [10] completed this scheme by
proposing an appropriate way to calculate the numericai
signal velocities. Hence we name it the HLLE method (see
also [11]) s relativistic extension is discussed in this
paper. One major advantage of this algorithm is the
possibility to include special relativistic effects a priori in the
scheme itseil. This is achicved by using the relativistic
cxpression in the estimation of the minimum and maximal
signal velocities. The approach of van Leer [12] is used to
construct a second-order scheme based on this approximate
Riemann solver. We restrict ourselves in this paper {0
one space dimension. lis generalization to two or three
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dimensions is straightforward using the well-tested method
of operator splitting. In the non-relativistic case these
algorithms have been quite successful in resolving complex
patterns of shocks as well as smooth ftow (see, e.g, [13]).
The format of this paper is as follows: in Section 2 the
relativistic hydrodynamic equations are defined. As usual in
relativistic theories, the quantities entering these equations
depend on the reference frame. Thus, in Section 3 we con-
sider the question how to transform these quantities from
the laboratory system into the rest frame of a fluid element.
In Section 4 the two members of the family of FCT
algorithms {5-7] are briefly discussed. A discussion of
the relativistic HLLE method is provided in Section 5
and numerical test calculations are discussed extensively in
Section 6. The Appendix gives a complete description of the
relativistic HLLE algorithm as used in the test calculations.

2. THE RELATIVISTIC HYDRODYNAMIC EQUATIONS

The equations of relativistic hydrodynamics of an ideal
fluid in one Cartesian space dimension x and formulated in
a fixed reference frame are of the form (velocity of light
c=1)[14]

R, + (Rv), =0, (1)
M, + (Mv+p), =0, (2)
E, 4+ {Fv+ pv),=0. 3

The indices ¢ and x denote time and space derivatives,
respectively. The reference frame can be any inertial frame,
for example, the laboratory frame or a centre-of-velocity
frame; its counterpart here wilt be the local rest frame of the
fluid, which varies from one fluid element to the next. For
simplicity we will refer to the fixed frame as the “laboratory™
system, although, as mentioned, it need not be confined
to this special case. The laboratory quantities R (mass
density), M {momentum density), and E (cnergy density)
are related to the quantities in the local rest frame e (energy
density) and # (mass density) and to the fluid velocity v by
the set of nonlinear transformations

R=yn, (4)

E=yYe+p)—p, (5)

M=y*e+ piv, (6)
1

}'2 = 1— 02 (7)

The system of equations (1)}-(7) is closed by specifying an
equation of state p= p(e,n). For the test calculations

discussed in Section 6 two types of equations of state are
used: The ideal gas equation of state

p=(=1)e—n) (8)
and its ultrarelativistic limit (e > n}
p={I—1}e, (9)

with the adiabatic index | < "< 2.

Relations (4)}-(9) introduce a strong coupling between
the hydrodynamic equations (1)}-(3) and pose additional
numerical problems, which are discussed in the next section.
This is the reason why the relativistic equations are much
more difficult to solve than their non-relativistic counter-
parts, although they are identical in the formal structure.
For example, the physical constraints £2 R, E > M, and
—1<v<1(=¢) have to be fulfilled in order for a solution
of the reiations (4 }-(6) to exist.

Thus it seems that this strong coupling requires a
simultaneous, ie., an implicit solution of the set of
Eqs. (1)-{9) on a Lagrangian or adaptive mesh. On the
other hand, as mentioned in the Introduction, having the
extension to two or three space dimensions in mind, implicit
schemes may be very time consuming and co-moving grids
are, in general, subject to strong distortions. Hence we
decided to focus our considerations on explicit Eulerian
algorithms and to base the relativistic schemes on methods
which have been recently developed for the non-relativistic
Euler equations and shown to be very efficient.

3. TRANSFORMATION FROM LABORATORY SYSTEM
TO LOCAL REST FRAME

For given values of R, M, and E, Eqs. (4)-(6), together
with the equation of state (8) and the definition of y (7},
make up a set of five equations with five unknown variables
n, e, p, v, and y, which have to be solved in each cell several
times during a time step. The solution of this problem
becomes a major part of the numerical effort and is a crucial
ingredient of all the algorithms proposed here.

Equations (4), (7}, and (8) can be inserted directly into
Eqgs. (5) and {6), yielding two coupied, non-linear equations
in the unknowns e and » (or v, respectively). These have, in
general, to be solved by a two-dimensional root-finding pro-
cedure. However, for the ideal gas equation of state {8) the
problem can be further simplified. Using simple algebraic
transformations it is possible to eliminate one of the two
unknown variables, yielding a polynomial of fourth orderin
the remaining variable. In our code we solve the equation

g(v) = [To(E— Mo)— M(1 —v")]*

— (1=t — 1Y R*=0, (10)
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with 0 € v < L. This equation could either be solved by the
analytic method of quartic equations or by iterative one-
dimensional root-finding procedures. Using appropriate
expressions for the lower limit v, the upper limit »,, and the
initial guess (starting value} v, the numerical root finding
was found to be the faster method for a required accuracy
of nine digits in ¢.

The expression for the lower boundary v, can be derived
inserting R =0 into Eq. (10):

1
2M(I -1}

v, = LFE—JTEP —4(r—1yM*].  (11)
This is just the ultra-relativistic limit. Inspecting Egs. (5),
(6) one observes that v= M/Faslongas p=0, and v < M/E
if p> 0. Thus, a safe estimate for the upper boundary v, is

_ M
y=min(1,—+8), 12
v mm( P ) (12)

& =~ 1075, In the interval defined by v; and v, there is only
one unique solution v of Eq. (10), while in the interval
0<<v <1 there is a second solution (at v < ¢;) that is not a
solution of the original set of coupled equations. It is
generated by using the square of Eq. (6} in deriving
Eq. (10).

A further advantage of using the boundaries v, and v, is
that both approach zero as M approaches zero. An expres-
sion for the starting value in the iteration scheme that leads
to fast convergence is

vo=4(v,+v,)+z, (13)
with z =1 {1 — R/E)v,—v,) for »,> ¢ and z =0 otherwise; ¢
is a small number of the order of 10~7. The additional term
z has the effect that, for small R, the starting value is close
to the solution of the ultra-relativistic problem.

Now the problem of finding the physically reievant
solution of Eq. {10) can be solved by applying a Newton—
Raphson root-finding procedure. An accuracy of nine digits
can be achieved in at most five iterations.

Knowing v, e can be easily derived from the relation

e=F—oM. (14)
v, #, and p can then be calculated in a straightforward
manner. Using the ultra-relativistic limit of the equation of
state, Eq. (9), the problem can be solved analytically,
yielding

o 1

T2A0-1)

and

W—DE+/TE*—MT 1) M?] (15)

E+(I—1)e
Ie '

2

V= (16)

4. FLUX CORRECTED TRANSPORT ALGORITHMS

In this section two hydrodynamic codes including versions
of the flux corrected transport (FCT) algorithm developed
by Boris and Book [5-7] are discussed. The basic idea of
the FCT method is to increase the stability of an arbitrary
differencing scheme by introducing a corrective nonlinear
diffusion step. This numerical dissipation is of conservative
form. In a succeeding antidiffusion step this diffusion is
removed partially (flux limiter) to avoid spurious oscillations
while retaining sharp profiles in cases of discontinuities or
steep gradients. This numerical diffusion gither can be intro-
duced externally by means of an artificial viscosity term or
can be inherent to the applied differencing scheme.

The SHASTA algorithm [5] is an example for an algo-
rithm that uses a stable but diffusive difference scheme,
A higher accuracy is achieved by including the phoenical
variant of the FCT method [6]. It has been used with great
success in the field of nuclear hydrodynamics [157]. Because
the SHASTA algorithm and the FCT methods have been
extensively discussed in the literaure (see [16] for a review
and the references cited above) we restrict ourselves to a
brief overview of the principles of the SHASTA algorithm.

Each of the hydrodynamic equations of motion is treated
separately in this approach by formulating it as an
advection equation,

U+ (Up), =1, (17)

where U is a (generalized ) density, v is the flow velocity, and
fis a source term. The indices f and x denote time and space
derivatives, respectively, The differencing scheme chosen
in the SHASTA algorithm yields the expression for the
transported density U,

- Ui)"'%qi—(uﬂrl = U

(18)

with
qiz(%-l_'sf)/(li(gfil_‘sf)) (19)
and
At
e 2h 2
Bi=vi— (20)

To achieve second-order accuracy in time, the sources f and
the velocities v are usually defined at the half step 5 A+ The
explicit form of the coefficients g, as given by (19) can be
derived from a simple geometrical picture (see, for instance,
Ref. [5-8]). The time step is limited to one-half the
Courant-Friedrichs—Lewy (CFL) limit.
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Considering the case of a constant velocity field and
vanishing sources expression (18) can be split into a term
corresponding to the usual three-point centered finite dif-
ference representation of the continuity equation (17)and a
second term proportional to a finite difference represguta-
tion of a diffusion term of the form #{d*U/dx?). Neglecting
the velocity-dependent term in the diffusion coefficient », we
are left with the expression

Di:é(i_jiﬁ-l_zrji_"ﬁf—l)' (21}
Now D has to be subtracted from U in order to obtain the
densities at the end of a time step. In this last step a flux
limiter is invoked that suppresses the generation of new
extrema in the antidiffusion step. This way of performing
the antidiffusion step is not the most scphisticated but
nevertheless a very effective method.

Retaining the velocity dependent diffusion coefficient for
the antidiffusion leads to the “phoenical SHASTA” algo-
rithm [ 6). The latest one-dimensional FCT techniques with
fourth-order accurate phases and minimum residual diffu-
sion are inciuded in a recently developed code called
LCPFCT [8]. It solves generalized continuity equations of
the form

U= -

1
(r&_lUl’)r—;;: (71D, + Ca(Dy), + D,

ra(kl

(22)

with =1, 2, 3 for Cartesian, cylindrical, or spherical coor-
dinates, respectively. The computational grid is allowed to
move in a restricted way during the course of a calcula-
tion. However, in the numerical applications discussed in
Section 6 we restrict ourselves to Cartesian coordinates and
uniform Eulerian grids.

The LCPFCT formulation of the transport and diffusion
step yields an expression similar in structure to the
SHASTA algorithm (i.c., a generalized three-point central
differencing scheme). However, the diffusion coefficients
used in the antidiffusion step are now more general and
chosen in such a way as to reduce the phase errors to fourth
order. Especially the velocity dependence of these coef-
ficients is kept.

The relativistic generalization of the FCT algorithms dif-
fers from the non-relativistic ones in only two respects. The
calculation of the rest-frame guantities is done as described
in Section 3. In addition, it was found necessary to aveid the
generation of cells with R > £ or M > E. This can be done
through a madification of the flux limiting [ 177, e.g., not to
carry out the antidiffusion step in the respective cells. The
simplest possibility is to readjust £ to fulfill the conditions
EzM, Ez R Violation of the conservation laws intro-
duced by these modifications is, in all cases we have studied,
of the order of the numerical accuracy.

5817105/1-7

5. THE RELATIVISTIC HLLE METHOD

In recent years alternative approaches have been shown
to be very effective in solving the Euler equations of
non-relativistic compressible hydrodynamics, named “high
resolution schemes” (sece, e.g., [13, 187). These are usually
based on upwind schemes which incorporate into the
numerical algorithm the direction of the nonlinear wave
propagation. This establishes the shock-capturing property.
A very simple upwind scheme was discussed by Harten er al.
[9] and supplemented with a prescription to calculate
estimates of signal velocities by FEinfeldt [107] (see also
Davis [197]}. Its relativistic extension, called the relativistic
HLLE method, will be discussed in this section. To obtain
a second-order accurate method van Leer's MUSCL-
approach [12] is used.

The HLLE method is a so-called Godunov-type upwind
scheme. In the Godunov method the discretized distribu-
tions of the conserved variables mass, momentum, and
energy density are assumed to be constant within each grid
zong, This defines an initial value problem consisting of a
series of local Riemann problems. The information con-
tained in the solution of these Riemann problems can be
used to determine the fluxes between grid zones. A new
plecewise constant approximation is obtained at the next
time level by averaging the local Riemann solutions over the
grid zones. The time step has to be limited such that no
interaction of neighbouring Riemann solutions will occur
{CFL-condition). For the Euler equations with the equa-
tion of state of an ideal gas the Riemann problem can be
soived exactly by a fixed point iteration. To reduce the com-
putational effort or if the derivation of the solution of the
Riemann problem is not possible or too cumbersome,
approximate solutions can be used to determine the numeri-
cal fluxes of mass, momentum, and energy. Methods based
on such an approximate Riemann solution are called
Godunov-type schemes.

We start with a formal vector notation of the system of
conservation laws {1)-(3)

U+ F(U) =0, (23)

where U is the vector of the conserved variables U=
{R,M,E}" and F(U) the flux F(U)={Rv, Mv+p,
(E+ p)v}T. An explicit numerical scheme in conservation
form, reproducing the integral conservation properties, is
given by

U =Ur—AGE, =G 1) (24)

with 1=4t/4x. As usual, 4¢ is the time step and Ax is
the (uniform) step size in space. The superscripts n denote
the number of time steps, the indices / define cell centers,
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the indices i+ 1/2 the corresponding cell faces. The values
G, > are the numerical fluxes between the grid cells,

Gl 2= GIUY UL ),

. (25)
where G is called the numerical flux function.

A first approximation to the Godunov method has been
proposed by Roe [20, 217. He replaced the exact solution
of the Riemann problem by that of the Riemann problem
for the linearized equation

U+ AU, =0, (26)
where 4 is a special mean value Jacobian matrix A4 =
dF(0)/dU, the so-called Roe matrix. In the case of an ideal
gas an appropriate definition of the average U has been
given by Roe {20]. The Riemann problem for the linear
equation (26} can be solved using the theory of charac-
teristics. But this requires the eigenvalues and eigenvectors
of the Jacobian matrix 4. This becomes quite complicated
for a relativistic hydrodynamic code with the strong
coupling of conservation laws (1)}-(3) and the transforma-
tion equations {4)-(7} and, in addition, with a complicated
equation of state.

It is therefore necessary to use a simpler method. Harten
et al, [9] showed how to construct a simple approximate
Riemann solution. In Roe’s method for the Euler equations
the exact solution of the Riemann problem, which consists
of four constant states separated by clementary waves, is
replaced by four constant states separated by linear discon-
tinuities. The Riemann solver of Harten et al. contains only
three constants states: the approximate Riemann solution
has the form

U, for x<b,
Ux,; U, U)=<01, for bit<<x<bhr, (27)
U, for x=b,t

This construction assumes that we have a priori bounds for
the smallest and largest signal velocities &, and b,, respec-
tively, U7, and U, are the unperturbed states on the left and
right. The intermediate state U, is determined by requiring
consistency of the approximate Riemann solution (27)
with the integral conservation equations over a gnd zone.
A short calculation gives

_b U, =0, U~ FU,)+ F(U))
Ir b,—b;

. (28)

The numerical flux associated with (27) and (28) has the
form

bXFU)—b7FUY+b b (U -U
G(Uh Ur)= L ( !) ! b('{'r_)z-_r ! { - I)a
r H

(29)

where

b7 =min(Q, b)), b =max(0, b,). (30)
It is obtained by substituting the Riemann solution into the
integral conservation laws over half the grid zone to the left
and right of the cell interface.

An essential ingredient of the scheme are good a priori
estimates for the smallest and largest signal velocities. In the
non-relativistic case Einfeldt [10] proposed calculating
them based on the smallest and largest eigenvalues of the
Roe matrix. This HLLE scheme is a very robust upwind
scheme for the Euler equations. It has been shown in [11]
that it is positively conservative, which means that the inter-
nal energy and density remain positive throughout the com-
putational process as long as no vacuum will occur in the
exact solution. This property is important in regions of
highly energetic flows and low densities. The method of
Roe does not possess this property (see [117). On the other
hand, introducing only one constant state between the
unperturbed regions will increase the numerical dissipation,
especially at contact discontinuities. The resolution of single
shocks is identical. We note that Einfeldt [10] proposed
a modified HLLE scheme, replacing the constant inter-
mediate state by a linear one which reduces the numerical
dissipation in the linear degenerate characteristic field. But
this method also uses the eigenvectors.

In the relativistic case we define bounds for the signal
velocities by the expressions

{31)

where ¢, denotes the relativistic sound velocity and the bar
denotes an average of the right and left states. Note that
these expressions correspond to relativistic addition (sub-
traction) of 7 and ¢, and are thus the natural generalization
of the non-relativistic analogue ¢+ ¢,. For the average in
the calculations presented below we use the arithmetic
average

o= (v, +¢,)/2, c,={c, +c, Y2 (32)
For weak shocks this is a good approximation of the shock
speed up to second-order terms in shock strength. Espe-
cially for strong shocks this choice may introduce wiggles.
To approximate the proper spreading of the characteristics
in the case of a rarefaction wave these simple averages are

modified by

b, = max (,,v_ﬂ_)
14+up,¢

rlsr

(33)
5f= min (bh %r‘).
[N
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In this way the signal velocities for a shock travelling to the
left or right are not affected: b,=b, and b,=4,. For a
rarefaction wave this modification prevents the under-
estimation of the signal velocities and the approximation of
unphysical rarefaction shocks. We note that the under-
estimation of the signal velocitics may introduce instabilities
or entropy violating shocks, because the numerical domain
of dependence does not completely cover that of the exact
solution. If we overestimate the signal velocities the scheme
remains stable, but the numerical dissipation will be
increased. According to the CFL-condition the upper and
lower limits for the signal velocities are

b, =1/, b= —1/4 (34)
The HLLE scheme in conservation form with the numerical
flux (29}, (30) and the signal velocities (34) is identical to
the Lax—Friedrichs scheme [22]. It is well known that this
scheme possesses a large amount of numerical dissipation.
For relativistic flows we have another possibility for the
choice of the signal velocities through a priori estimates for
the velocity. The choice

(33)

where ¢ denotes the velocity of light, yields a simple and
robust numerical method which is only applicable to highly
relativistic flow. Otherwise the numerical dissipation
produces very crude results.

Another method of calculating the averaged signal
velocities that was tried was inspired by Roe’s non-
relativistic formuiae

E*,/R,vr+JEv,
JR AR,

2 2
. Roc; +. /R,

T VR AR,

r-1 JRR
2 (JR +JR)

In our test problems we found only minor differences to
Eq. {32), only for the special case of ¢, >~ 0is Eq. (36) to be
preferred (see below).

The equation for the numerical flux (29) and (30),
together with the definition of the signal velocities (33),
defines our first-order relativistic HLLE algorithm. To
achieve second-order accuracy we use the MUSCL-
approach introduced by van Leer [12] (see also [23]). Van
Leer replaced Godunov's pigcewise constant distribution by
a piecewise linear one. That means that, in a first step, slopes

(36)

+

(vr - UI)Z'

are calculated in e¢ach grid zone, This is to be done by
a monotonicity-preserving interpolation of the integral
approximative values. These slopes define right and left
boundary values in each grid zone. Second order in time is
achieved by updating these boundary values after half a
time step. Here we only approximate the change of the
piecewise linear distribution inside the cell New
approximative integral values on the next time level are now
obtained by the scheme in conservation form (27), where
the flux between the grid zones is calculated by the
reiativistic HLLE flux (29), (30}, and {33), but now using
the updated boundary values within the grid zones instead
of the integral values in the first-order method. A detailed
listing of the second-order relativistic HLLE algorithm is
given in the Appendix. For simplicity we will call this
second-order version also relativistic HLLE. We do not
show any results of the first~order scheme.

In recent years a number of appropriate slope calcula-
tions for the first step within the MUSCL-type scheme
has been proposed; a review is given in [247. These
slope calculations guarantee, e.g., the preservation of
monotonicity or the TVD-property (total variation
diminishing). In this paper we use the simplest slope
prescription as given by Roe (see [24]). If @, and &, denote
the right- and left-hand difference quotient of the vector U
in the ith grid zone, then the vector of slopes §; is
determined by the formula

a; for Ja.ijg..lb,‘i, ai'bi>0=
S;=minmod(a;, b;)=< b,  for |a;|>]b;l,a;-6;>0,
0 otherwise.

{37)

The piecewise linear approximations need not necessarily be
defined in the conserved quantities . In non-relativistic
calculations best results for a MUSCL-type scheme are
usually obtained using characteristic variables. This is based
on Roe’s [20] local linearization of the nonlinear system,
which defines a local system of characteristic fields. This
method, however, again requires the knowledge of the
cigenvectors of the Roe matrix. Another possibility is the
use of the primitive variables n, p, and v to perform the slope
approximation. This method has the advantage that step 2
of the relativistic HLLE algorithm {see Appendix) 15 super-
fluous. This alternative approach has been tested replacing
the variable » by the expression yo to get a better resolution
in the case of ultra-relativistic velocities. In most of the test
cases in the next section only insignificant differences
between these two methods occur. In general, the use of
primitive variables in the slope calculation leads to larger
numerical viscosity. This improves the stability of the
algorithm, espectaliy for shock tube problems with strong
initial pressure gradients.
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6. SAMPLE PROBLEMS AND TEST CALCULATIONS

6.1. The Shock Tube Problenm: and the
One-Dimensional Shock Model

For validation and comparison we apply the numerical
algorithms to relativistic Riemann problems which admit an
analiytical solution or a solution by numerical integration of
an ordinary first-order differential equation, as will be sum-
marized below. Qur first test problem is a flow in a shock
tube at relativistic velocities. At time =0 two regions of
fluid with pressures p, and p, and densities #, and n,,
respectively, are separated by a diaphragm. For a shock
tube problem the velocities on both sides are zero. At =0
this diaphragm is suddenly removed. Identically to the non-
relativistic case four constant states occur separafed by
three elementary waves: either shock waves or rarefaction
waves and a contact discontinuity. We consider a shock
tube problem for which the solution has the following struc-
ture: a rarefaction wave travels to the left and a shock wave
to the right, followed by a contact discontinuity. This situa-
tion is sketched in Fig, 1. We denote the different states by
numbers 0 to 4. Regions 0 and 4 are the undisturbed fluid
still at rest, region t is the rarefaction fan, region 2 is the
constant state between the tail of the rarefaction wave and
the contact discontinuity, while region 3 is the shock
plateau.

The solution of the Riemann problem is obtained by
matching pressure and velocity at the rarefaction tail and at
the shock front, i.e., by the requirement

P2=Pss (38)

Uy = 035,
The rarefaction wave can be determined by applying
similarity methods, as discussed in detail in Ref. [25] for
the equation of state (8). This requires the numerical
integration of an ordinary first-order differential equation,

rarefaction  contact
R fan discont. shock front
Fy AN /
] ! ! ! I
b | i
| I
| I 1
| | |
| | l
| | !
| | I
! I
| | | |
[ | [ i
I | |
(SR TR N & R A
— -+ X
FI1G. 1. Schematic representation of the density profile in the shock

tube problem. Five regions can be identified: the undisturbed fluid (0} and
(4), the rarefaction fan {1), the region bounded by the rarefaction tail and
the contact discontinuity {2}, and the shock plateau bounded by the
contact discontinuity and the shock front (3).

as will be summarized below. If instead the ultra-relativistic
limit (9) is assumed, this problem can be solved analyti-
cally.

In solving the relativistic isentropic expansion, the mass
and momentum equations (1) and (2) are vsed. The encrgy
equation (3) is replaced by the adiabatic expansion law

(e — n)(eo— o) = (nfng)". (39)
Note that ys=1. The index 1 has been dropped. The
pressure can be eliminated in the momentum equation by
means of relations (8} and (39).
Defining the similarity variable

{=x/t (40)
the continuity equation can be written in the form
dR R
—_—= - 41
dv v—_ (41

Using the definition of the energy-momenium tensor, the
equation of state and the quantity B = v(e — n) the momen-
tum can be expressed by

M= (R+ B} yu. (42}
Calculating the total derivatives dR/d and dv/dl we are left,

after some algebraic manipulations, with the ordinary
first-order differential equation

dR_ R R+TEB
& 1_o\' NT(r—1)B)

Note that there is an error in the corresponding formula
(C.13) of Ref [25]. Equation (43) is integrated using a
fourth-order variable step Runge—Kutta procedure starting
with 6@ =0.

The solution of the relativistic shock wave is given by the
Rankine-Hugoniot-Taub relations [267. In the laboratory
system {rest frame of fluids 0 and 4) the following relations
hold:

(43)

Us:[(P3_P4)(93*€4)J”2 (44)
(e4+ p3)es+ pa)
(p3— pales+ Pa)]”z
Ushock = . 45
hock [(e4+p3)(e3—e4) (45)
The last two relations can be combined yielding
1 pa—
Dynock = — 2204 (46)
vy eq+ ps
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The compression ratio is determined by the relation

-~

1, by
~= , 47
n 7 (47)

~2p

-2

where the tilde denotes quantities defined in the rest frame
of the shock front.

The solution of the relativistic Riemann problem is now
obtained by matching p'* and v, the pressure and velocity
of the ith integration step in solving Eq. {43), with p; and
v;. The code can be made more efficient by first solving
Eq. (46) for v, =", As long as the resulting shock velocity
exceeds the speed of light the guess yields unphysical results
and no complete solution of the Taub relations has to
be provided. As soon as b, <1 the relativistic jump
conditions are solved and the quantity

PEz”=(93+P3)53?’;(53"54)4‘173 (48)
is calculated. The matching condition now reads
lps’ — pal <& (49)

Initially the difference in {49) is negative. As soon as it
becomes positive, the final solution is obtained by a regula
faisi procedure.

In the ultra-relativistic limit of the ideal gas equation
of state {9), the solution of the Riemann problem can be
simplified considerably. Because B is proportional to the
internal encrgy a consistent treatment of the ultra-relativistic
limit also requires the limit #» — 0 in the definition of B, 1.,
B = ye. This yiclds the ultra-relativistic limit of Eq. (43)

dR R
—= s [v—(F~1)"7
= o= (M= 1)) (50)
which may be solved analytically,
in R=In R, — 5 [In(1 —2v?)
+(F= 1" in((1 +v)/(1 —v))]. (51)

The relativistic jump conditions can also be simplified in the
case of Eq. (9), yielding a simple quadratic form for the
pressure p,,

Py — 1} + py pavi/(I—1)

+0AT= 1) +2)+ pivi—1)=0. (52)

Solutions of the relativistic Riemann problem are discussed,

together with the numerical test runs, in Subsection 6.2.
The second test problem is another Riemann problem,

the one-dimensional shock model proposed in [27].

Because it offers an analytical approach to the physics of
shock waves it is useful in order to obtain estimates of equa-
tion of state effects in relativistic heavy ion collisions [28].

In the one-dimensional shock model in its simplest form
iwo identical slabs of matier collide (see Fig. 2). Initially
there is a uniform distribution of density and energy, 1., =
Hegm =Ho and ey =en =€y, while v =0v>0 and
Urgne = —0. This defines the two slabs touching at 7 =0. For
¢ >0 the matter in the coilision zone is compressed yielding
values n > ngand e > e,. If the absolute values of the incom-
ing velocities exceed the local speed of sound two shock
waves are generated travelling in opposite directions into
the inflowing matter. This problem is thus similar to the wall
shock problem frequently used as a test case in numerical
hydrodynamics {see, e.e., [ 4, 25, 291). The one-dimensional
shock model corresponds to the wall shock problem
reflected at the fixed boundary. The solution of the one-
dimensional shock model is given by the Rankine—
Hugoniot-Taub relations discussed above.

One important special case is the shock heating of a cold
fluid defined by p,=0. In this case the compression ratio
o = n/n, is given by the relation (y = e/n)

(33)

0.2. Test Runs

The main differences between relativistic and non-
relativistic Riemann problems are due to the non-linear
velocity addition and the Lorentz contraction. The first
effect yields a curved velocity profile for the rarefaction fan,
whereas in the classical case there is a linear profile. The
Lorentz contraction narrows the shock plateau and allows
the classical ideal gas limit of (I"+ 1)/(I"— 1) for the com-
pression ratio at the shock front to exceed, as is indicated by
Eq. (53) for the strong shock limit. These effects become
particularly strong in the ultra-relativistic case. Also the
rarefaction fan can become squeezed considerably if the
velocity of sound ¢, approaches the speed of light, ie., 7= 2
and ¢® # in the Appendix, Eq. {3).

The first setup for the numerical test runs is a mildly
relativistic shock tube with ny=1, n,=0.125 and p,=1,
P, =0.1, Equation of state (8) is applied with "= 1.4. The
structures of the resulting profiles are quite similar to the

€g. My €y.Ng
+V -V
_ s —

FIG. 2. Initial configuration of the one-dimensional shock model
Two identical slabs of matter are colliding with opposite velocities » and
—u. They are just touching at 1 =0.
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non-relativistic case, for which it is a standard benchmark
and usually called Sod’s problem [30]. In Fig.3 the
pressure p, the velocity v, and the proper density R are
shown for the relativistic HLLE, phoenical SHASTA, and
LCPFCT algorithm, respectively. Obviously relativistic
HLLE produces the best results. The absolute value of the
various plateaus is reproduced very well without numerical
oscillations. In contrast, both SHASTA and LCPFCT show
numerical oscillations that are particularly strong in the
region between rarefaction tail and contact discontinuity,
In addition to these long wavelength oscillations, in the
LCPFCT run there are overshoots and undershoots
restricted to one cell just at the contact discontinuity and
the shock front, respectively, Those are best visible in the
velocity profile.

SCHNEIDER ET AL.

However, due to the antidiffusion step the FCT algo-
rithms are able to produce sharper profiles of the discon-
tinuities. So the shock fronts in the SHASTA and LCPFCT
are much narrower than in the relativistic HLLE calcuia-
tion. One can observe this directly in Fig. 3 comparing the
number of grid points over which the shock fronts extend.

The results of Fig. 3 can be compared to calculations
described in [4], in which the same Riemann problem was
used as a test case for a fully implicit one-dimensional
relativistic hydrodynamic code. Results for three different
types of computational meshs are discussed, with a total
number of 200 grid points in each case. Using an Eulerian
grid there is a broad overshoot at the transition region
between rarefaction wave and contact discontinuity. The
width of the shock front is nine zones. In the Lagrangian
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FIG. 3. The shock tube problem for time ; =48 on a 200-zone mesh with Ar= 4x/3. In all figures the fuil line corresponds {o the exact solution:
(a) vetocity; (b) pressure; (c) proper density profile, calcylated with the relativistic HLLE algorithm; (d-T) the same quantities calculated with the

SHASTA algorithm; (g-i) calculated with the LCPFCT algorithm.



ULTRA-RELATIVISTIC HYDRODYNAMICS

calculation this overshoot is still present; however, it is
somewhat smaller. The shock front now spreads over 13
zones that, of course, now have a smaller dx so that the
absolute width of the shock is reduced. Good results are
obtained only in the adaptive mesh calculations. In this case
the grid points are extremely concentrated at locations
showing gradients in the mass, momentum, or energy
density, allowing an accurate reproduction of the shock
tube profiles.

The second test case is a Riemann problem including the
shock heating of a cold fluid (Fig. 4). The initial conditions
are now py=134, p,=0 (p.=3%x 107° numerically} and
no= 10, n,=1 with I'=3in Eq. (8).

The fluid velocity now slightly exceeds 0.7 and, thus, the
relativistic effects are much more pronounced than in the
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previous problem. The extreme pressure gradient estab-
lishes a tough test case for any algorithm. Thus relativistic
HLLE, SHASTA, and LCPFCT show deviations from the
exact solutions. The best agreement with the analytical
result is again obtained with the relativistic HLLE algo-
rithm. Besides a small oscillation on the contact discon-
tinuity plateau near the rarefaction fan, the only con-
siderable deviation from the analytical solution is the shape
and height of the shock plateau in the density distribution.
The LCPFCT algorithm shows similar results; however, the
quality of reproduction of the plateau values is slightly
worse than in the HLLE code. Again, the most severe
deviation is found at the shock plateau density. Relativistic
HLLE and LCPFCT underestimate this density by about
10%. SHASTA, on the other hand, produces a much too
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FIG. 4. The shock tube problem for time ¢ = 36 on a 200-zone mesh with 41 = Ax/5: (a—c) velocity, pressure, and proper density profile, calculated
with the relativistic HLLE algorithm; (d-{) the respective quantities calculated with the SHASTA; (g-i) the quantities calculated with the LCPFCT

algorithm.
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low density plateau with a spike 2t the shock front. Also the
oscillatoric behaviour at the tail of the rarefaction fan is
more pronounced than in the other algorithms.

Similar results are obtained by Centrella and Wilson in
Ref. [257. The density shock plateau in their calculations is,
however, reduced to a peak that may be an artefact of an
overshoot in the pressure distribution. This distribution,
however, is not shown in the respective reference.

A Riemann problem including the ultra-relativistic equa-
tion of state (9) with "= 1.99 is studied in Fig. 5. The initial
conditions are p,=1990, p,=995, ny=2, n,=1. The
velocity of sound then has a constant value of(0.995, yiclding
a box-like shape of the velocity profile, as discussed above.

Again there is a nice correspondence between exact solu-
tion and relativistic HLLE. Only in the density profile at the
shock plateau are there very small oscillations, whereas the

SCHNEIDER ET AL.

density plateau between the rarefaction fan and the contact
discontinuity, as well as the pressure and velocity plateaus,
are nearly perfectly uniform.

On the other hand, there are strong overshoots in the
velocity profile calculated with LCPFCT and SHASTA,
yielding corresponding undershoots and overshoots in
pressure and density. This shows that highly relativistic
sound velocities can cause numerical problems even in weak
shock tube problems with initial pressure and density ratios
of only 2. This is important because, in future applications
using nuclear matter equations of state, sound velocities
close to the speed of light could be possiblie [28].

A comparison of the results produced by relativistic
HLLE, LCPFCT, and SHASTA for colliding slabs is shown
in Fig. 6. The straight line is the analytical result obtained
from the one-dimensional shock model discussed above.
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FIG. 5. The shock tube problem for time ¢ = 20 on a 200-zone mesh with 4t = 4x/3: (a-c} velocity, pressure, and proper densily profile, calculated
with the relativistic HLLE algerithm; {d-f) the same quantities, calculated with the SHASTA; (g1} the quantities calculated with the LCPFCT algorithm.
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F1G. 6. Proper density profile of a one-dimensional shock model
calculation with y=10 and e,=n,=0.15, after 150 iterations with
Adr=A4x/3 on a 100-zone mesh. The equation of state is p= (I — I e —n):
(a)r=3%{byr=14

Again relativistic HLLE is clearly closest to the exact
solution. There is only a siight dip in the central region
of the shocked matter. For =3 (Fig. 6a) LCPFCT and
SHASTA exhibit numerical oscillations around the uniform
solution with a pronounced undershoot in the central
regicn. These oscillations are closely related to the value of
the adiabatic index or the type of equation of state applied.
They are reduced if we take I'=14 and otherwise
unchanged initial conditions (cf. Fig. 6b) or if we use the
ultra-relativistic equation of state p=(I"— 1)e, instead of
p={(I"—1)}(e—n). The width of the shock front is two zones
for all three algorithms.

Figure 6 shows the situation for colliding slabs afier a
comparatively long period of time. This is contrasted with
Fig. 7, showing a colliding slab run with half the number of
grid points and after a much shorter period of time. This
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FIG. 7. Rest frame energy e profile of a one-dimensional shock model
calculation with y=1037 and ¢; =35, n,=2, after 100 iterations with
At=4x/5 on a 50-zone mesh. p =¢/3 has been assumed.

tests the ability of the code to fulfil the conservation rela-
tions locally even during the early stages of the collision,
SHASTA produces long wavelength oscillations around the
exact solution that are only reduced with increasing time,
while relativistic HLLE establishes the energy plateau
correctly from the very beginning, Other explicit relativistic
hydrodynamic codes usually show strong limitations in the
allowed y-factors [25, 29].

Figure 8a shows the energy ¢ for a v = 10° collision. Even
on the logarithmic scale the analytic solution is reproduced
perfectly. The shock width is only one zone. The same
problem calculated with SHASTA {Fig. 8b) also pives the
correct plateau, however, with a very broad and irregular
shock front. The results for LCPFCT are quantitatively
similar with those obtained by SHASTA.

The shock heating of a cold fluid has been used as a test
case for the transport algorithm in [ 4, 25, 297. Wall shock
boundary conditions are assumed in those calculations.
Figure 9 compares the relative error in the compression
ratio for the relativistic HLLE, SHASTA, and LCPFCT
codes with results given in Ref [29]. In the case of
relativistic HLLE, SHASTA and LCPFCT the one-dimen-
sional shock model has been assumed to provide the bound-
ary conditions. A 100-zone grid has been used. As discussed
above, the physical solution is identical to the (reflected)
wall shock problem but the numerical stmulation is some-
what more difficult in the one-dimensional shock model
case. The initial conditions are #n,=1 and ey,=1
(eo=1.000001 numerically) and /=3 in equation of state
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(8); y i1s varied between 1.5 and 50. The relative error is
obtained by first calculating the average in the density @
over the plateau of shocked matter, with an assumed shock
width of two zones, and then calculating the quantity
(7 — Rineory )/ Pineory- This definition has been taken over from
Ref. [25].

The results cited in [29] (where an improved version of
the code discussed in [25] was applied) show a strong
y-dependence with a relative error >2% for y> 7. In the
LCPFCT, SHASTA, and relativistic HLLE results there is
no such strong increase in error with increasing y. For
LCPFCT and SHASTA the refative error for y 2 101s about
0.5 % for relativistic HLLE it is only 0.2 %.
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FI1G. 9. Relative error in the compression ratio obtained by several
numerical aigorithms in a shock heating of cold fluid simulation.

Furthermore, a strong I'-dependence of the transport
aigorithm was found in [25] while a test calcuiation using
relativistic HLLE with y =10 and 7"=1 yields exactly the
same relative error as for I'=1.

In [4] the same wall shock problem was calculated using
the implicit algorithm on an Eulerian grid with 200 zones,
that is, an effective vertex number a factor of 4 larger than
n the relativistic HLLE calculations. For y = 10 a relative
error of 0.2% is stated, compared with 0.18% in the
relativistic HLLE calculation.

The slight increase in the relative error with increasing y
in the relativistic HLLE results is due to the definition of the
relative error given above. For small values of y there are
small oscillations around the exact value n,,,,, that cancel
in performing the average over the shock plateau, while for
y = 10 the code value is systematically too low. If, instead,
the variance were calculated, the error would be nearly
constant at about 0.2 %.

In some of the test problems, using equation of state (8),
regions occur in which the sound velocity ¢, approaches
zero (which can be physically reasonable for some model
calculations of nuclear matter). This leads to spurious
oscillations near the shock in relativistic HLLE, if Eq. (32)
1s used to calculate the signal velocities. One may use Roe's
prescription of the signal velocities (36); alternatively, a
simple numerical fix was employed: the signal velocities
were required to exceed a cutoff value § in magnitude;
d =~ 5 x 10~ * was found to yield satisfactory results.

6.3. Conclusion

In this paper we were able to compare one-dimensional
test problems solved with the newly developed relativistic
HLLE code, a relativistic implementation of the LCPFCT
algorithm, the well-established relativistic version of
phoenical SHASTA, the explicit code described in [25, 297,
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and the implicit algorithm discussed in [4]. Restricting our
considerations to Eulerian grids due to the demands of
future three-dimensional applications, relativistic HLLE
vields the best results. It is astonishing that this physically
motivated exphcit technique is even supertor to implicit
schemes. Particularly important is the fact that there is
practically no restriction for the allowed y factors. Thus,
ultra-relativistic three-dimensional calculations should be
possible, using relativistic HLLE and directional splitting
techniques.

LCPFCT and phoenical SHASTA, though somewhat less
accurate, also do not show the strong y-dependence that can
be found in the codes of [25,29]. The advantage of the
sharper shock profiles in the numerical solution of a
Riemann problem due to the antidiffusion step is paid for
with numerical oscillations. In the one-dimensional shock
model the shock width is identical for relativistic HLLE,
LCPFCT, and SHASTA, at least for small and medium vy
factors, while for large y factors there is again a strong
advantage for the relativistic HLLE algorithm. This is due
to the excellent conservation properties of relativistic HLLE
that become particularly important at ultra-relativistic
velocities. A more serious problem may be the fact, that, in
contrast (o relativistic HLLE, it takes some time for
LCPFCT and SHASTA to establish the correct stationary
solution. This could be of particular importance in ultra-
relativistic heavy ion collisions where the compression
phase evolves very quickly.

APPENDIX: COMPLETE LISTING OF THE
RELATIVISTIC HLLE METHOD

At the beginning of a new computational cycle 2 complete
set of hydrodynamic quantities at time step # is assumed to
be known. Remember that R, M, and E are considered to be
elements of a vector U and the corresponding fluxes are
elements of a vector F. This will allow us to use a symbolical
vector notation.

= Step 1. Determination of cell face values.

y
vr, =ur s,

i =

with S7 a slope vector as defined in Eq. (37).

Note that now for each cell 7 a set of three distinct values
for all hydrodynamic variables has to be determined: U, (at
cell center i), U,, (at cell face (i + 3)) and U,_ (at cell face
(i—1%), see Fig. 10). The second index + is necessary
because cell (ace (i + 1) is common to cell i and cetl (i + 1).
In fact there are only two independent variables, the
variable defined at the cell center and the corresponding
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FIG. 10. Definition of the piecewise linear discretization used in the
second-order relativistic HLLE method.

slope, but in order to increase computational efficiency, the
three quantities are stored,

e Step 2. Calculation of the rest-frame quantities.
Calculate the rest-frame variables »,,, ¢, p;,, as well as
7;+ and v, corresponding to the Step 1 quantities U7, (see
Section 3).

o Step 3. Updating of the lab-frame quantities for the half
time step:

. {4 R vi — R v"

!
UL = Uy =35 MI07, + ply = Mo — pl.
CUEL + ol — (EF 4 pi) vl

(2)

o Step 4. Calculation of the rest-frame quantities for the
half step. Calculate the rest-frame variables n,,, e, p;, as
well as y,, and v, at the cell faces i + } for time step n + 1
(see Section 3).

Steps 3 and 4 provide second-order accuracy in time.
Now the first-order refativistic HLLE upwind scheme can
be applied on the complete set of variables 7} ' and

g7+ ', ¢ being a symbol for the quantities , e, v, y, and p.

e Step 5. Calculation of the sound velocity c¢,. The
relativistic isentropic sound speed corresponding to the
equation of state (8) is given by the relation [25]

A =1)e—n)

(e)*= n+ F(e—n) )

In the limit 7 — 0 this equation reduces to the well-known
relation (¢,)* = 1 in the case of the ultra-relativistic equation
of state (9) with I"'=4%; ¢, has to be calculated at the cell
interfaces.
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s Step 6. Estimate of the signal velocities. It is necessary
to define appropriate mean values in cajculating the signal
velocities from ¢,/ and v V2. If the average is defingd by
the arithmetic mean, it has to be decided whether first to
calculate the mean values of ¢, and v and then the signal
velocities or vice versa. In special relativity, in contrast to
the classical case, the two ways yield different results. The
correct procedure, as shown below, is to first calculate the
mean values of v and ¢, and then the signal velocities. The
relations used in the code are (for the arithmetic average)

F12 _ L2 172
vilys =zl el ) (4)
and
n+1/2 __ I n+ 172 n+ 072
o i =30}y +ei G- ) (5}

Now the signal velocities can be derived using

a4 172 n 12 n4 172 n+ 172
b =max|0 Ui+1l2+cs,i+1f2 vﬁlgcs,(,ur]]_
P12 4 1+U:1+1,’2€r1+1/2 » 1+U”+”2 n+ 172 ’
it 1285 i+ 12 G+ —Cstit1)—
(6)
n+1/2 _ n+lf2 m+1/2 _ n+ 12
{1)7 *min 0 Ui+l{2 C.\‘,i+lf2 UH— c.\‘i+ (7}
i+ 12 s 1~ n+ 12 0+ 142 -‘I n+ L2+ 12 0
PivippCoiyipp 10 "0

That this prescription is the correct one in calculating mean
values of signal velocities can be seen from the test problem
of two colliding slabs of equal ¢ and # but opposite sign of
v touching at =0 at cell face k + 1 (see Section 6). Using
the method described above, the algorithm reproduces the
correct physical behaviour, that is, at first the density in cells
k and &+ 1 increases while the corresponding absoiute
value of the velocities decreases. As soon as the density limit
prescribed by the Rankine-Hugoeniot-Taub relations is
reached, the velocities associated with cells k and £+ 1 are
about zero and celis k-1 and k+ 2 are now subject to
compression and so on, thus describing two shock waves
propagating in opposite directions. This can be achieved
because Eq. (4) vields a mean value of =0 at cell face
k+ 3.

On the other hand, calculating first the signal velocities
and then the required averages yields a non-vanishing
velocity at cell face k& + §. The effect is that the compression
of cells k and k + 1 does not stop as soon as the density
plateau defined by the Rankine-Hugoniot-Taub relations is
reached. The densities in these cells increase further on and
the absolute values of the velocities increase again with
reversed sign in order to conserve total momentum. This
means that no shock waves are formed and the total system
soon becomes unstabie.

SCHNEIDER ET AL.

+ Step 1. Determination of the numerical fluxes. At first
we calculate the fluxes 7, = F(U,,, g;. ), where F{U) is the
physical flux of the conservation laws (23). The numerical
fluxes are now determined by

+ n+ 172 -
(b5+1/2Ff+ _b£+1/2F
K+ 12

"+ 1/2
i+ 1)— )
+ — + /2 +1/2
+bi+l,’2bi+l,’2(U’(1i+l)— - U?Jr / )

(8)

G;‘+1/2_ bt b~
i+ 12 i+ 172

« Step 8. Determination of the time-advanced quantities
U"+! The time-advanced values of the quantities U are
obtained from those of the current cycie by adding the
differences of incoming and outgoing numerical fluxes

At

n+1 _ n_ a2 et 12
U = U -2 Gt I3

i+ 172 i—1/2 )

(9)

» Step 9. Time-advanced values of rest-frame guantities.
In a last step, again, the system of Eqgs. (4)-(7) has to be
solved as outlined in Section 3 to provide a complete set
of hydrodynamic variables at the beginning of the next
computational cycle.
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